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Abstract

The principal resonance of a Mathieu–Duffing oscillator to random excitation is investigated. The
method of multiple scales is used to determine the equations of modulation of amplitude and phase. The
effects of damping, detuning, cubic term, and magnitudes of random excitation are analyzed. The explicit
asymptotic formulas for the maximal Lyapunov exponent is obtained. The almost-sure stability or
instability of the stochastic Mathieu–Duffing system depends on the sign of the maximal Lyapunov
exponent. In the last part of the work, the numerical results are obtained.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Consider the Mathieu–Duffing system which described by the following ordinary differential
equation:

€x þ �h _x þ o2
0x þ �bx cosðOtÞ þ ax3 ¼ 0: (1)

The equation is extensively used for parametric nonlinear vibrations in engineering. It is
important to investigate dynamical behaviors of this system. For weak excitations, Yamaguchi [1]
see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.11.029

n item: The National Natural Science Foundation of China (10333020).

ding author. Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072,

l.: +86 29 88492393.

resses: ljrljr@sohu.com (J. Li), weixu@nwpu.edu.cn (W. Xu).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

J. Li et al. / Journal of Sound and Vibration 286 (2005) 395–402396
in 1985 investigated the structure of stochastic layer for such an oscillator through the Chirikov
overlap. Esmailzadeh and Nakhaie-Jazar [2] in 1997 found that there exists necessary and
sufficient conditions for the existence of at least one periodic solution for the Mathieu–Duffing
equation. Natsiavas et al. [3,4] investigated a Mathieu–Duffing oscillator under constant external
load. They reveals that the oscillator examined may exhibit strong (first-order) resonance for two
ranges of the forcing frequency. The first one occurs when the excitation frequency, it has identical
form with the Mathieu–Duffing oscillator under principal parametric resonance. However, unlike
the Mathieu–Duffing oscillator with no constant external forcing, the system examined exhibit a
second strong resonance, which occurs in forcing frequency ranges near the linear natural
frequency. Luo [5,6] in 2003 investigated Mathieu–Duffing oscillator with a twin-well potential, in
his work, the approximate criteria for the onset and destruction of a specified, primary resonant
band of the Mathieu–Duffing oscillator was developed. Ng et al. [7,8] investigated the Mathieu
equation to which is added a cubic nonlinearity x3 term using averaging method. However, all
above work is due to a deterministic Mathieu–Duffing oscillator. Rong Haiwu et al. [9] in 2003
investigated the almost-sure stability or instability of the stochastic Mathieu system depends on
the sign of the maximal Lyapunov exponent.
In this paper, we will investigate the almost-sure stability or instability of the Mathieu–Duffing

under the stochastic parametric excitation by stochastic multiple scales method.
2. Multiple scales method

Consider the following Mathieu–Duffing oscillator under random excitation:

€x þ �h _x þ o2
0x þ �bx cosðOt þ gW ðtÞ þ dÞ þ �ax3 ¼ 0; (2)

where dots indicate differentiation with respect to the time t, � is a small parameter, o2
0 and h are

natural frequency and damping coefficient, respectively, W ðtÞ is a wiener process, O is the
excitation frequency, g is excitation strength, d is a random variable uniformly distributed in
½0; 2p�: The system under random excitation is called stochastic Mathieu–Duffing oscillator.
The method of multiple scales [10] has been widely used in the analysis of deterministic systems.

Nayfeh and Serhan [11] extend this method to the analysis of nonlinear systems under random
external excitation. Rong Haiwu et al. [12] extend this method to the nonlinear systems under
random internal excitation. In this paper, the multiple scales method is used to investigate the
response and stability of system (2). Then, a uniformly approximate solution of Eq. (2) is sought
in the form

xðt; �Þ ¼ x0ðT0;T1Þ þ �x1ðT0;T1Þ þ �2x2ðT0;T1Þ þ � � � ; (3)

where T0 ¼ t; T1 ¼ �t are fast and slow time scale, respectively.
Throughout this paper, we only discuss the first-order uniform expansion of the solution

x0ðT0;T1Þ of Eq. (2). By denoting Dn ¼ q=qTn ðn ¼ 0; 1; 2; . . . ;mÞ; the ordinary-time derivatives
can be transformed into partial derivatives as

d

dt
¼ D0 þ �D1 þ � � � ;

d2

dt2
¼ D2

0 þ 2�D0D1 þ �2ðD2
1 þ 2D0D2Þ þ � � � : (4)



ARTICLE IN PRESS

J. Li et al. / Journal of Sound and Vibration 286 (2005) 395–402 397
Substituting Eqs. (3) and (4) into Eq. (2) and comparing coefficients of � with equal powers, one
obtains the following equations:

D2
0x0 þ o2

0x0 ¼ 0; (5)

D2
0x1 þ o2

0x1 ¼ �2D0D1x0 � hD0x0 � bx0 cos j� ax30; (6)

where j ¼ Ot þ gW ðtÞ þ d: The general solution of Eq. (5) can be written as

x0 ¼ AðT1Þ expðio0T0Þ þ ĀðT1Þ expð�io0T0Þ: (7)

We shall investigate the principal resonance of system (2), it is clear that resonance occurs when
O� 2o0 ¼ oð�Þ: Introducing the detuning parameter s as follows: O ¼ 2o0 þ �s: Substituting Eq.
(7) into Eq. (6), one obtains

D2
0x1 þ o2

0x1 ¼ �
b
2

ĀðT1Þ expðio0T0 þ ist þ igW ðT1Þ þ idÞ � 2io0A
0 expðio0T0Þ

� hAðT1Þio0 expðio0T0Þ � aA3 expð3io0T0Þ � 3aA2Ā expðio0T0Þ þ cc; ð8Þ

where cc represents the complex conjugate of its preceding terms. Then, elimination of the secular
terms yields

2io0A
0 þ

b
2

ĀðT1Þ expðisT1 þ igW ðT1Þ þ idÞ þ 3aA2Ā þ hAðT1Þio0 ¼ 0; (9)

where the prime stands for the derivative with respect to T1: Expressing A in the polar form

AðT1Þ ¼ aðT1Þ expðiyðT1ÞÞ: (10)

Substituting Eq. (10) into Eq. (9), one obtains

a0 ¼ �
b
4o0

a sin Z�
h

2
a;

ay0 ¼
b
4o0

a cos Zþ
3a
2o0

a3; (11)

where Z ¼ sT1 þ gW ðT1Þ þ d� 2yðT1Þ: Eq. (11) can be written as

a0 ¼ �
b
4o0

a sin Z�
h

2
a;

aZ0 ¼ sa �
ba

2o0
cos Z�

3a
o0

a3 þ agW 0ðT1Þ: (12)

After solving a and Z; the first-order uniform expansion of the solution of Eq. (2) is given by

x ¼ 2að�tÞ cos
O
2

t �
Zð�tÞ
2

� �
þ oð�Þ:



ARTICLE IN PRESS

J. Li et al. / Journal of Sound and Vibration 286 (2005) 395–402398
3. Stability and Lyapunov exponents

By Eq. (12), we can conclude the nonlinear term x3 take effects on the amplitude of the system’s
response by influencing the phase Z:When sin Zo� 2ho0=b (i.e., a040), there are energy input in
the system so amplitude a will be increased and Z be changed. The system takes on stable vibration
and a0 ¼ 0; Z0 ¼ 0 when velocity of input energy equals velocity of output energy.

3.1. Trivial solution and its stability

Obviously a ¼ 0 is the trivial solution of Eqs. (12), now we discuss its stability. We obtain the
following linearized equations of (12) at ð0; 0Þ

a0 ¼ �
b
4o0

a sin Z�
h

2
a;

Z0 ¼ s�
b
2o0

cos Zþ gW 0ðT1Þ: (13)

Let v ¼ ln a; Eq. (13) can be written as the following Ito equations:

dv ¼ �
h

2
�

b
4o0

sin Z
� �

dT1;

dZ ¼ s�
b
2o0

cos Z
� �

dT1 þ gdW ðT1Þ; (14)

Z steady-state probability density function obtained by detail balance method is given as

pðZÞ ¼
exp½s̄Zþ b̄ cos Z�

C

Z Zþ2p

Z
exp½�ðs̄x þ b̄ cos xÞ�dx; (15)

where C is the normalization constant of the invariant measure and is given by

C ¼ 4p2 expð�s̄pÞI is̄ðb̄Þ � I�is̄ðb̄Þ (16)

and InðxÞ is the Bessel function of the first kind and n can be any real and complex number.
s̄ ¼ 2s=g2; b̄ ¼ b=o0g2: The largest Lyapunov exponent l ¼ lmax of the corresponding solution

(a0; Z0) is given by

l ¼ ða0; Z0Þ lim
T1!1

1

T1
ln jaðT1; a0; Z0Þj; w:p: 1: (17)

The almost certain stability of the trivial solution (13) can be determined by the largest Lyapunov
exponent l ¼ lmax; when lo0 the trivial solution is almost certainly stable and when l40 the
trivial one is almost certainly unstable, hence l ¼ 0 is the bifurcation point of the stability of the
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trivial solution. From Eqs. (17), one has

l ¼ lim
T1!1

1

T1
ln

aðT1Þ

aðT0Þ

����
���� ¼ lim

T1!1

1

T1
ðln aðT1Þ � ln aðT0ÞÞ

¼ lim
T1!1

1

T1
ðvðT1Þ � vðT0ÞÞ ¼ lim

T1!1

1

T1

Z T1

0

dv

¼ �
h

2
�

b
4o0

Z 2p

0

sin Z � pðZÞdZ: ð18Þ

When h ¼ 0:0; o0 ¼ 1:0; g ¼ 0:5; the variation of l with s and b are shown in Fig. 1(a), and the
corresponding level lines are shown in Fig. 1(b).
Fig. 1(a) and (b) show the three-dimensional plot of the Lyapunov exponent l: Near the

parameter resonance at excitation frequency O ¼ 2o0: The Lyapunov exponents increase,
reaching their maximum values in the center of the instability region. In the deterministic case
when b ¼ 0; it is well known that the Lyapunov exponent of system (2) is l ¼ �h=2: So the trivial
solution of Eq. (2) is stable if and only if h40: From Fig. 1(a) and (b), it can be shown that l is a
decreasing function of jsj; and reaches its maximum value when s ¼ 0: On the other hand l is a
increasing function of b; which means that trivial solution will lose its stability and become
unstable as the amplitude of random parameter excitation increase. In short, trivial solution
stability of Eq. (2) is as same as system without term x3: So nontrivial solution steady-state
response of Eq. (2) need to study.

3.2. Nontrivial steady-state response

For nontrivial steady-state response aa0; Eq. (12) can be written as the following Ito
equations:

da ¼ �
h

2
a �

b
4o0

a sin Z
� �

dT1;

dZ ¼ s�
b
2o0

cos Z�
3a
o0

a2
� �

dT1 þ gdW ðT1Þ: (19)
Fig. 1. (a) The Lyapunov exponent and (b) the corresponding level lines.
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In the case when g is small, i.e., W ðT1Þ is a narrow-band random process, we can use perturbation
method to solve Eq. (19). When g ¼ 0; the steady-state solution of Eqs. (19) is given by

a0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2so0

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4o2

0h
2

q
ffiffiffiffiffi
6a

p ;

sin Z0 ¼ �2ho0=b: (20)

When ga0 but is small, let

a ¼ a0 þ a1; Z ¼ Z0 þ Z1; (21)

where a0; Z0 are defined by Eqs. (20) and a1; Z1 are small terms. Substituting the above equations
into Eqs. (19) and neglecting the nonlinear terms, we obtain the linearized equations

a0
1 ¼ �

b
4o0

a0 cos Z0 � Z1;

Z01 ¼ �hZ1 �
6aa0a1

o0
þ gW 0: (22)

The above equations yield

a001 þ ha01 �
3aba0 cos Z0

2o0
a1 ¼

bga0
4o0

cos Z0xðT1Þ; (23)

where xðT1Þ ¼ W 0ðT1Þ: Since W ðT1Þ is a standard Wiener process, its form derivative xðT1Þ is a
standard Gaussian white noise. It is clear that ða1; a0

1Þ are also Gaussian processes, their steady-
state probability density function obtained by detail balance method is given as

pða01; a1Þ ¼ C exp �
16ho2

0

ðbga0 cos Z0Þ
2

ða0
1Þ
2
�
3baa0 cos Z0

2o0
a21

� �( )
; (24)

where C is the normalization constant. From Eq. (24) it is clear that C can be normalized if and
only if aa0 cos Z0o0; which is also the necessary and sufficient condition of the existence of
nontrivial of Eqs. (11). The steady-state probability density function is given by

pða1Þ ¼ C0 exp �
24ho0a

bg2a0 cos Z0
a21

� �
; (25)

where C0 is the normalization constant. Then the second moment of a1 is

Eða21Þ ¼

ffiffiffi
p

p

2
�
bg2a0 cos Z0
24ho0a

� �3=2

: (26)

From Eq. (24) one has E½a1� ¼ 0;

EðaÞ ¼ Eða0 þ a1Þ ¼ a0;

Eða2Þ ¼ a20 þ

ffiffiffi
p

p

2
�
bg2a0 cos Z0
24ho0a

� �3=2

: (27)
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3.3. Numerical simulation

For numerical simulation it is more convenient to use the pseudorandom signal. Let h ¼ 0:1;
o0 ¼ 1:0; g ¼ 0:5; a ¼ 0:1:When b ¼ 0:2 the numerical results of the first and second moments of
Eq. (1) with s are shown in Fig. 2(a) and (b).
4. Conclusions

The principal resonance of Mathieu–Duffing systems under random parametric excitation is
investigated. The behavior, stability be studied by means of qualitative analysis. The effects of
damping, detuning, cubic term, and magnitudes of random excitation are analyzed. The
contributions from damping and stiffness can be taken fully into account. The theoretical analyses
are verified by numerical results. Theoretical analyses and numerical simulations show that when
the intensity of the random excitation increases, the trivial steady-state solution loses its stability
and then the system may have a nontrivial state solution.
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