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Abstract

The principal resonance of a Mathieu—Duffing oscillator to random excitation is investigated. The
method of multiple scales is used to determine the equations of modulation of amplitude and phase. The
effects of damping, detuning, cubic term, and magnitudes of random excitation are analyzed. The explicit
asymptotic formulas for the maximal Lyapunov exponent is obtained. The almost-sure stability or
instability of the stochastic Mathieu—Duffing system depends on the sign of the maximal Lyapunov
exponent. In the last part of the work, the numerical results are obtained.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the Mathieu—Duffing system which described by the following ordinary differential
equation:

¥ 4 ehx + ofx + efx cos(Qt) + ax® = 0. (1)

The equation is extensively used for parametric nonlinear vibrations in engineering. It is
important to investigate dynamical behaviors of this system. For weak excitations, Yamaguchi [1]
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in 1985 investigated the structure of stochastic layer for such an oscillator through the Chirikov
overlap. Esmailzadeh and Nakhaie-Jazar [2] in 1997 found that there exists necessary and
sufficient conditions for the existence of at least one periodic solution for the Mathieu—Duffing
equation. Natsiavas et al. [3,4] investigated a Mathieu—Duffing oscillator under constant external
load. They reveals that the oscillator examined may exhibit strong (first-order) resonance for two
ranges of the forcing frequency. The first one occurs when the excitation frequency, it has identical
form with the Mathieu—Duffing oscillator under principal parametric resonance. However, unlike
the Mathieu—Duffing oscillator with no constant external forcing, the system examined exhibit a
second strong resonance, which occurs in forcing frequency ranges near the linear natural
frequency. Luo [5,6] in 2003 investigated Mathieu—Duffing oscillator with a twin-well potential, in
his work, the approximate criteria for the onset and destruction of a specified, primary resonant
band of the Mathieu—Duffing oscillator was developed. Ng et al. [7,8] investigated the Mathieu
equation to which is added a cubic nonlinearity x* term using averaging method. However, all
above work is due to a deterministic Mathieu—Duffing oscillator. Rong Haiwu et al. [9] in 2003
investigated the almost-sure stability or instability of the stochastic Mathieu system depends on
the sign of the maximal Lyapunov exponent.

In this paper, we will investigate the almost-sure stability or instability of the Mathieu—Duffing
under the stochastic parametric excitation by stochastic multiple scales method.

2. Multiple scales method

Consider the following Mathieu—Duffing oscillator under random excitation:
X+ ehx + w%x + &fx cos(Qt + yW(t) + 6) + cax® = 0, 2)

where dots indicate differentiation with respect to the time ¢, ¢ is a small parameter, »j and / are
natural frequency and damping coefficient, respectively, W (¢) is a wiener process, 2 is the
excitation frequency, y is excitation strength, 0 is a random variable uniformly distributed in
[0, 27]. The system under random excitation is called stochastic Mathieu—Duffing oscillator.

The method of multiple scales [10] has been widely used in the analysis of deterministic systems.
Nayfeh and Serhan [11] extend this method to the analysis of nonlinear systems under random
external excitation. Rong Haiwu et al. [12] extend this method to the nonlinear systems under
random internal excitation. In this paper, the multiple scales method is used to investigate the
response and stability of system (2). Then, a uniformly approximate solution of Eq. (2) is sought
in the form

x(t,8) = xo(To, T1) + ex1(To, T1) + &2x2(To, T1) + - - -, 3)

where Ty = ¢, T| = et are fast and slow time scale, respectively.

Throughout this paper, we only discuss the first-order uniform expansion of the solution
xo(To, Ty) of Eq. (2). By denoting D, =0/0T, (n=0,1,2,...,m), the ordinary-time derivatives
can be transformed into partial derivatives as

d d

a:Do—i—gDH—---, W:D§+23DOD1+32(Df+2D0D2)+--- . 4)
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Substituting Egs. (3) and (4) into Eq. (2) and comparing coefficients of ¢ with equal powers, one
obtains the following equations:

D%)C() + (J)SX() =0, (%)

Dgxl + a)%xl = —2DyDxg — hDyxog — fxo cos ¢ — ocxg, (6)
where ¢ = Qt + yW(t) + 0. The general solution of Eq. (5) can be written as
xo = A(T1) exp(iog To) + A(T1) exp(—iwo To). (7

We shall investigate the principal resonance of system (2), it is clear that resonance occurs when
Q2 — 2wy = o(e). Introducing the detuning parameter ¢ as follows: Q = 2wy + 0. Substituting Eq.
(7) into Eq. (6), one obtains

Djxi + wjx; = — g/_l(Tl) exp(iog Ty + iat + iy W(T1) + i8) — 2iwgA" exp(iwgT)
— hA(T)iwy exp(imgTo) — ad® exp(3iwgTo) — 30A>A exp(iogTo) + cc, (8)

where cc represents the complex conjugate of its preceding terms. Then, elimination of the secular
terms yields

2img A’ + gf_l(Tl) exp(ic T + iyW(T) + i) + 3044 + hA(T))iwy = 0, 9)

where the prime stands for the derivative with respect to 7';. Expressing A in the polar form
A(T) = a(T1) exp(i0(T)). (10)
Substituting Eq. (10) into Eq. (9), one obtains

/

a = —ma sin i —Ea,
3
a@’zia cosn+—aa3, (11)
4(()() 2600

where 5 = oT | +yW(T)+ 6 — 20(T). Eq. (11) can be written as

, .
a = ———dad SIn — —=d
4o =34

3
an' = oa — ﬁ(:os n— Sy ayW'(T). (12)
o

2600

After solving a and #, the first-order uniform expansion of the solution of Eq. (2) is given by

x = 2af(et) cos [%t — %gt)] + o(e).
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3. Stability and Lyapunov exponents

By Eq. (12), we can conclude the nonlinear term x* take effects on the amplitude of the system’s
response by influencing the phase #. When sin n< — 2hwg/f (i.e., @’ >0), there are energy input in
the system so amplitude a will be increased and # be changed. The system takes on stable vibration
and @ = 0, #/ = 0 when velocity of input energy equals velocity of output energy.

3.1. Trivial solution and its stability

Obviously a = 0 is the trivial solution of Egs. (12), now we discuss its stability. We obtain the
following linearized equations of (12) at (0, 0)

, .
a = ———a Sin — —=d
4o =74

n’=o—icosn+yW’(T1). (13)
261)0

Let v = In a, Eq. (13) can be written as the following Ito equations:

h B .
dv = <—§—4—a)051n 7’]) dTl,
dn = <0 — 2%10005 11> d7T, +ydw(Ty), (14)

n steady-state probability density function obtained by detail balance method is given as

exp[én + f cos
() = p[ncﬂ n

2n
]/n+ exp[—(Gx + B cos x)]dx, (15)

n
where C is the normalization constant of the invariant measure and is given by
C = 4n” exp(—em)ig(B) - I-is(P) (16)

and I,(x) is the Bessel function of the first kind and n can be any real and complex number.
¢ =20/y%, B = B/woy?. The largest Lyapunov exponent 4 = Anay of the corresponding solution

(a0, o) is given by
) . 1

A= (ap,ny) lim —Inla(T;a0,n)l, w.p. L. (17)
Ti—o0 Tl

The almost certain stability of the trivial solution (13) can be determined by the largest Lyapunov
exponent A = Anax, when 2<0 the trivial solution is almost certainly stable and when 2>0 the
trivial one is almost certainly unstable, hence 4 = 0 is the bifurcation point of the stability of the
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trivial solution. From Egs. (17), one has

_ . 1 Cl(Tl) T 1
A= Tlllinoo T}ln ATl = Tlllinoo ?l(ln a(Ty) — In a(Ty))
_ 1 . 1 h
= Jlim (T~ oTo) = fim - /0 do
h o
— ———i sin 1 - p(n)dn. (18)
2 4600 0

When 4 = 0.0, wy = 1.0, y = 0.5, the variation of 4 with ¢ and f are shown in Fig. 1(a), and the
corresponding level lines are shown in Fig. 1(b).

Fig. 1(a) and (b) show the three-dimensional plot of the Lyapunov exponent A. Near the
parameter resonance at excitation frequency Q2 = 2wy. The Lyapunov exponents increase,
reaching their maximum values in the center of the instability region. In the deterministic case
when f = 0, it is well known that the Lyapunov exponent of system (2) is 1 = —//2. So the trivial
solution of Eq. (2) is stable if and only if #>0. From Fig. 1(a) and (b), it can be shown that 4 is a
decreasing function of |¢|, and reaches its maximum value when ¢ = 0. On the other hand 1 is a
increasing function of f, which means that trivial solution will lose its stability and become
unstable as the amplitude of random parameter excitation increase. In short, trivial solution
stability of Eq. (2) is as same as system without term x>. So nontrivial solution steady-state
response of Eq. (2) need to study.

3.2. Nontrivial steady-state response

For nontrivial steady-state response a#0, Eq. (12) can be written as the following Ito
equations:

da = <—éa —4ia sin n) dT,

2 (N
dny = (a—icosn—3—aa2> dT, +ydW(Ty). (19)
2(1)0 o

a
A M O N A

(a) (b) i

Fig. 1. (a) The Lyapunov exponent and (b) the corresponding level lines.
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In the case when v is small, i.e., W(T') is a narrow-band random process, we can use perturbation
method to solve Eq. (19). When y = 0, the steady-state solution of Egs. (19) is given by

26wy — /B — 4(9(2)/12

dy =

NG )
sin 17y = —2hwy/f. (20)

When y#0 but is small, let
a=ay+a, n=1ny+n, 21

where ay, 1, are defined by Egs. (20) and a;, n, are small terms. Substituting the above equations
into Egs. (19) and neglecting the nonlinear terms, we obtain the linearized equations

/
a, = ———ap CoS 1 -
1 4wq Mo - N15

6aaya,

ny = —hny — +oy W (22)

The above equations yield

3
a/l/ + //lClll o “ﬂao COs 1y a; = /iyao
0

> cos 1no&(T), (23)
(N (0]

where &(T1) = W'(T,). Since W(T,) is a standard Wiener process, its form derivative &(T) is a
standard Gaussian white noise. It is clear that (a;,a}) are also Gaussian processes, their steady-
state probability density function obtained by detail balance method is given as

16hw? 3
pld),a1) = C exp ——“’Oz[waf—waﬂ , (24)
(Bya cos o) 2wy

where C is the normalization constant. From Eq. (24) it is clear that C can be normalized if and
only if aay cos n,<0, which is also the necessary and sufficient condition of the existence of
nontrivial of Egs. (11). The steady-state probability density function is given by

24hwoor
= - 25
pi) eXp{ By2aq cos noal} 2
where C' is the normalization constant. Then the second moment of a; is
2 3/2
By = YT (_Prao cos g\ " 26
(@) =3 < 24hwo (26)
From Eq. (24) one has E[a|] =0,
E(a) = E(ap + ar) = ao,
2 3/2
E(?) = & V[ Byag cos ny . P
(@) =a + 2 24hwgo 27)
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Fig. 2. (a) and (b) — theoretical solution and o o o numerical solution.
3.3. Numerical simulation

For numerical simulation it is more convenient to use the pseudorandom signal. Let 2 = 0.1,
wy = 1.0,y = 0.5, « = 0.1. When f = 0.2 the numerical results of the first and second moments of
Eq. (1) with ¢ are shown in Fig. 2(a) and (b).

4. Conclusions

The principal resonance of Mathiecu—Duffing systems under random parametric excitation is
investigated. The behavior, stability be studied by means of qualitative analysis. The effects of
damping, detuning, cubic term, and magnitudes of random excitation are analyzed. The
contributions from damping and stiffness can be taken fully into account. The theoretical analyses
are verified by numerical results. Theoretical analyses and numerical simulations show that when
the intensity of the random excitation increases, the trivial steady-state solution loses its stability
and then the system may have a nontrivial state solution.
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